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Abstract. We consider a model for a single molecule with a large frozen spin sandwiched in between
two BCS superconductors at equilibrium, and show that this system has a π junction behavior at low
temperature. The π shift can be reversed by varying the other parameters of the system, e.g., temperature
or the position of the quantum dot level, implying a controllable π junction with novel application as a
Josephson current switch. We show that the mechanism leading to the π shift can be explained simply
in terms of the contributions of the Andreev bound states and of the continuum of states above the
superconducting gap. The free energy for certain configuration of parameters shows a bistable nature,
which is a necessary pre-condition for achievement of a qubit.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects – 74.78.Na Meso-
scopic and nanoscale systems – 85.25.-j Superconducting devices

1 Introduction

Molecular spintronics is a promising new domain, at the
convergence of two challenging disciplines. On the one
hand there is molecular electronics, where single molecules
are used to create electronics devices at the nanometric
scale with unique properties, while on the other hand there
is spintronics, where the spin of the electron is used as the
relevant quantity in place of the electronic charge. The
latter allows us to take advantage of the unusual proper-
ties of spin, like a long coherence time. It is in this context
that we consider in our work the equilibrium properties of
a molecule with a large magnetic moment placed between
two superconductors, when a Josephson current flows be-
tween the two superconductors through the molecule. The
focus will be on the effect, on the Josephson current, of
the coupling between the spin of the electrons producing
the current and the molecular spin. We will show in par-
ticular that when this spin coupling is large enough, the
superconducting junction behaves as a π junction, with
a reversal of the Josephson current compared to the case
without spin coupling.

Of great importance for molecular spintronics are
molecules possessing a large spin, or “single molecule mag-
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nets”. Such molecules can now be synthesized, for exam-
ple the molecule Mn12ac, which has a ground state with a
large spin S = 10, and a very slow relaxation of magnetiza-
tion at low temperature [1]. This slow relaxation is due to a
high anisotropy barrier for the magnetization, around 5.6
meV for Mn12ac. For the system we are considering, this
is a very large energy, as the typical energies in our system
(temperature, coupling to the electrodes, etc.) are at most
of the order of the superconducting gap (which is 0.1 meV
in aluminum for example). This motivates our choice to
take the molecular spin as a fixed quantity, which will act
as a local magnetic field for the electrons going through
the molecule. Note that other systems, where the spin is
not fixed, involving for example superconducting trans-
port through fullerene molecule doped with magnetic im-
purities have been considered experimentally and theoret-
ically [2,3]. Concerning the electronic transport across the
molecule, we model the molecule as a single resonant level,
i.e. a quantum dot. As we will be interested in the regime
of good transparency between the molecules and the su-
perconducting electrodes, we will neglect in this work the
electronic interactions on the resonant level [4].

The main result of our paper is to show that, when
the coupling to the molecular spin is large enough, the
system shows a π shift. A reversal of the super-current in
a Josephson device and the free energy having a global
minima at phase difference π is referred to as π shift and
a Josephson junction displaying this is termed a π junc-
tion [5]. The π junction has potential applications in
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Fig. 1: Schematic view of the system.

superconducting electronics, in quantum logic circuits as
switches and are an integral part of superconducting phase
qubits. We will also show that this π shift can be controlled
by the other parameters of the system (position of the dot
level, temperature, coupling to the electrodes, etc.), allow-
ing to reverse the π shift and recover a standard Josephson
junction.

Generally in works related to π junction behavior the
bound state current, which is due to current carrying An-
dreev bound states formed between the two supercon-
ductors, is investigated while the contribution from the
continuum of states above the superconducting gap is ig-
nored [6]. There are good reasons for doing so, since the
continuum contribution is generally much reduced com-
pared to bound state current, especially in the limit of a
long junction or a very short one. However recent works
have shown that the continuum current cannot be ig-
nored [7–10], especially in a Josephson junction which is
neither very short nor very long. In this work, we calcu-
late explicitly the contribution from the continuum, and
we show that the in the presence of a large coupling to
the molecular spin, the continuum current is essential to
understand the π junction behavior. In some regime, the
bound state current can even vanish, and the continuum
current is then the only contribution. We will show also
that, with some fine-tuning of the parameters of the sys-
tem, the system can be in a bi-stable state, where the
φ = 0 and φ = π state are equally stable; this bi-stability
is a necessary condition for a possible qubit implementa-
tion.

The rest of the work is organized as follows. The next
section deals with a short history of the π-shift as seen
in Josephson junctions and with the possible applications
which such behavior may have. Section 3 is devoted to
the derivation of the Josephson current when coupling to
the molecular spin is present. In Section 4 we use the for-
mulae obtained in Section 3 to show the behavior of the
Josephson current as a function of the coupling to the
molecular spin, and of the other parameters. We give a
detailed explanation of the mechanism leading to the π
shift. In Section 5 we discuss some potential applications
of our system, first as a Josephson current switch, then as
a superconducting qubit. Section 6 is devoted to conclud-
ing remarks.

2 Brief history of π-shift

In order to show how our work and results differ from
existing works on π junctions, we find useful to give a
very short history of the π-shift. π junctions were first

proposed theoretically by Bulaevskii and coworkers in
references [11]. They considered a tunnel junction with
magnetic impurities in the barrier. In this system spin-
flip tunneling leads to a formation of π junction. They
also predicted that a super-conducting ring containing a
π junction could generate a spontaneous current and a
magnetic flux opening the way for experimental detec-
tion. Spin flip tunneling in superconductor-quantum dot-
superconductor (S-QD-S) system has also been shown to
give rise to a π junction behavior as in references [12–14].
It was Kulik who in 1966 was the first to discuss the spin-
flip tunneling through an insulator with magnetic impu-
rities [15]. The spin-flip tunneling is predicted to domi-
nate the Josephson current when spin on the quantum
dot is non-zero. In S-QD-S junction, changes in the sign
of the critical current could be observed as a function of
the quantum dot gate voltage which controls the occu-
pancy of a quantum dot. Due to this gating capability
one has more control over the magnetic state of a barrier
in S-QD-S junction compared to a magnetically doped
Superconductor-Insulator-Superconductor junction [16].
Superconductor-Ferromagnet-Superconductor (SFS) have
also been shown to give rise to a π junction behavior both
in theory [17–19] as well as in experiments [20,21]. The
study of the superconducting π state sheds more light on
the coexistence of superconductivity and ferromagnetism
in general and is also important for superconducting elec-
tronics [22]. Generally with increase in the strength of
the exchange field the π shift is observed with a reversal
and suppression of the super-current. In SFSFS systems
with the ferromagnets in anti-parallel alignment, however,
with increase in the strength of the exchange field an
increase in super-current is observed [23]. In SIFIS and
SFcFS, where c denotes a constriction, structures also
such π junctions have been observed [5]. Recently triplet
superconductor-ferromagnet-triplet superconductor junc-
tions have been predicted to have potential applications as
current switches [24]. In contrast to SFS systems, π junc-
tion behavior in SNS systems occurs due to the creation
of a non-equilibrium distribution of electrons in the bar-
rier via a control channel [25]. Thus in these systems
the π-junction can be controlled via a voltage applied
to the control channel this makes such devices ideal for
them to be used in superconducting digital circuits, es-
pecially as a phase inverter, i.e., π-SQUID [26] for com-
plementary Josephson digital devices. Further application
of π junctions as candidates for engineering quantum bits
have been predicted [27]. Finally, π junctions have also
been theoretically predicted and experimentally observed
in superconducting d-wave junctions [5].

3 Derivation of the josephson current

3.1 Model Hamiltonian

The Josephson current (IJ ) can be calculated from the
derivative of the free energy (F ) with respect to the
phase difference (φ) across the superconducting leads IJ =
2dF/dφ, in equilibrium. The free energy in turn is defined
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as F = −kT lnZ, where Z is the partition function of our
system. Thus calculating Z is the first step in calculating
the Josephson current in our system. The full Hamiltonian
of our system is written as below:

H = HD−S +
∑

j=L,R

Hj +HT , (1)

where HD−S defines the Hamiltonian of the quantum-dot
molecule with spin, Hj represents the superconducting
leads, while HT denotes the tunneling part (a schematic
view of the system is shown in Fig. 1). The dot-spin Hamil-
tonian is:

HD−S = ε
∑

σ

d†σdσ + JS(d†↑d↑ − d†↓d↓), (2)

where dσ, d
†
σ are the electronic operators in the dot, ε is

the energy level of the dot, J the coupling between the
molecular spin S and the electronic spin on the dot level.
The coupling term comes from the exchange interaction
JS · s, where s is the electronic spin on the dot, but as
explained in the introduction, the molecular spin is fixed in
our system, and we chose the spin quantization axis along
the spin orientation. In the superconducting Hamiltonian
it is convenient to perform a gauge transformation which
removes the phase from the order parameter [28]. Thus,

Hj =
∑

k

Ψ †
jk(ξkσz +∆σx)Ψjk, Ψjk =

(
ψjk,↑
ψ†

j(−k),↓

)
, (3)

and finally the tunnelling part can be written in the stan-
dard form with a hopping parameter tj determining the
transfer properties of the junction. The Pauli matrices
mentioned in the above equation are matrices in particle-
hole space. The effect of the gauge transformation on the
tunnel Hamiltonian is the appearance of a phase depen-
dence in the hopping parameter

HT =
∑

jk

Ψ †
jkTjd+ h.c., d =

(
d↑
d†↓

)
(4)

with TL = tLσze
iσzφ/4, TR = tRσze

−iσzφ/4, where φ is the
phase difference between the superconducting leads, and
tj is the tunnelling amplitude between the jth lead and
dot.

3.2 Neglecting coulomb interaction

In the present work we chose to neglect the charging en-
ergy of the molecule. Molecular electronics transport cal-
culations are typically concerned with two limits: either
the limit where the tunnelling rate from the molecule
to the leads dominates over the charging energy, or the
opposite limit of strong Coulomb blockade which can be
dealt in the incoherent regime or in the coherent regime.
The validity of each regime depends on the transparency
of the tunnel barriers connected to the molecule, and on
the capacitances seen by the molecular quantum dot with

respect to the leads. So far in the literature, many ef-
forts have focused on the Landauer-Buttiker description of
molecular electronics transport [29]. In some instances [30]
this approach is supplemented by taking Coulomb inter-
actions in an effective manner using density functional
theory, but the Green function which is used to com-
pute the transmission coefficient is determined from a
specific electron configuration, as for an effective one-
electron Coulomb potential. Here we adopt a Hamiltonian
approach to compute the current, but the basic assump-
tions for neglecting Coulomb blockade effects also apply.
This is justified as follows.

In fact this stems from the fact that the charging en-
ergy of the molecular quantum dot is assumed to be small
compared to the the escape rate of the electrons from the
dots to the leads, later to be referred to as Γ . This regime
triggers a substantial broadening of the dot level, as for
instance was discussed in reference [31] where a molecule
was attached to metallic substrate, being effectively “met-
alized”. Qualitatively speaking, if the transparency from
the dot to the leads is close to unity, the time scale which
characterizes the lifetime of electrons on the molecular
quantum dot is so short that Coulomb blockade effects do
not have time to operate.

These qualitative arguments are substantiated by the-
oretical works on the Coulomb blockade in the presence of
highly transmissive barriers, which were carried out more
than a decade ago. Reference [33] studies the behavior
of a quantum dot embedded between two point contacts,
and finds a crossover to a regime where charge fluctua-
tions in the dot are dominant, therefore wiping out charge
quantization (Coulomb blockade) effects. The tempera-
ture which characterizes this crossover is of course propor-
tional to the dot charging energy, but it also goes to zero
in the limit of ideal transmission. Reference [34] consid-
ers a quantum dot connected to single barriers, and shows
that the energy of the dot undergoes (Coulomb block-
ade) oscillations as a function of gate voltage as long as
the transmission coefficient of the barrier, which isolates
the dot, does not approach unity. On another note, refer-
ence [35] uses a path integral framework [36] to describe a
quantum dot with arbitrary barriers. Previous results [33]
concerning charge fluctuations are recovered, but more im-
portantly it is shown that the effective charging energy is
exponentially reduced at ideal transmission. This latter
result applies, granted to a dot coupled to several chan-
nels, but these features are expected to survive for a dot
coupled to a single, highly transmissive channel.

Note that in the above, it is sufficient for only one of
the two contacts to have a large capacitance in order to be
able to neglect Coulomb effects. The present point of view
is consistent with recent works on molecular electronics is-
sues where phonons are involved [32], but electron-electron
interactions are neglected nevertheless.

Finally, we stress the fact that there exist actual ex-
periments in molecular electronics, which can achieve
the high transmission conditions which are assumed
in the present work. It has been demonstrated that
break junction geometries [37] can achieve close to ideal
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transmission: for a hydrogen molecule which is sandwiched
between Platinum electrodes, one observes a conductance
quantization plateau at 2e2/h, when bringing the two elec-
trodes together, as expected from a monovalent metal as
hydrogen (in contrast, a pure platinum junction yields
steps at 4e2/h). This is the direct evidence of single, per-
fectly transmitting channel. To summarize, in these works,
which have been extended to study the effects of vibra-
tions on the molecule [38], no Coulomb blockade effects
show up at all. For the present study, we thus assume
that our molecule is placed under the same conditions as
in these break junction experiments. Note that high trans-
mission conditions have also been obtained with Carbon
nanotubes [39,40].

3.3 Effective action

To calculate the partition function we use the path integral
approach. In this method the partition function is given
by:

Z =
∫ ∏

jk

(DΨ̄jkDΨjkDd̄ Dd) e−SA . (5)

Z is written as a functional integral over grassmann fields
for the electronic degrees of freedom (Ψ, Ψ̄). The Euclidean
action reads:

SA = SD +
∫ β

0

dτ

⎡

⎣
∑

jk

Ψ̄jk(τ)(∂τ + ξkσz

+∆σx)Ψjk(τ) +HT (τ)

⎤

⎦ ,

β is the inverse temperature, and HT (τ) =∑
jk Ψ̄jk(τ)Tjd(τ) + h.c. while SD =

∫ β

0 dτ [d̄(∂τ +
εσz + JS)d]. After integrating out the leads we get

Z =
∫
Dd̄ Dd e−Seff with

Seff = SD −
∫ β

0

dτ dτ ′ d̄(τ)Σ̌(τ − τ ′)d(τ ′) (6)

where Σ̌(τ) =
∑

j=L,R T
†
jG(τ)Tj and G(τ) =

∑
k(∂τ +

ξkσz +∆σx)−1δ(τ).
We perform a Fourier transform on the Matsubara fre-

quencies (with wn = (2n+ 1)π/β): δ(τ) = 1
β

∑
wn
e−iwnτ

and G(τ) = 1
β

∑
wn
e−iwnτGwn , which gives for the Green

function G:

Gwn =
∫
dξ ν(ξ)(−iwn + ξkσz +∆σx)−1

� πν(0)√
w2

n +∆2
(iwn +∆σx). (7)

In the above equation, ν(ξ) =
∑

k δ(ξ − ξk) is approx-
imated as a constant ν(0), the density of states at the

Fermi level in the normal leads. This gives for the self-
energy:

Σ̌wn =
Γ/2√

∆2−(iw)2
[iwn−∆ cos(φ/2)σx−γ∆ sin(φ/2)σy ]

(8)
with γ = (ΓL − ΓR)/(ΓL + ΓR), Γ = ΓL + ΓR, ΓL/R =
2πν(0)t2L/R. We get finally for the effective action (intro-
ducing d(τ) = 1√

β

∑
wn
e−iwnτdwn)

Seff =
∑

wn

d̄wnMwndwn

with Mwn = −iwn + εσz + JS − Σ̌wn . (9)

3.4 Andreev levels

The dispersion equation for the Andreev levels is given
by the eigenvalues of the effective action in equation (9)
(with iw = z)

det
[
z − εσz − JS +

Γ/2√
∆2 − z2

(z

−∆ cos(φ/2)σx − γ∆ sin(φ/2)σy)
]

= 0,

(10)

which gives (introducing the parameter s = JS):

(z +
Γz

2
√
∆2 − z2

− ε− s)(z +
Γz

2
√
∆2 − z2

+ ε− s)

− Γ 2∆2(cos2(φ/2) + γ2 sin2(φ/2))
4(∆2 − z2)

= 0. (11)

While this cannot be solved analytically in general, there
are two limiting regimes where one can get an analytical
expression of the solutions, giving two Andreev levels. For
simplicity, we choose here ε = 0 and γ = 0:
case 1: Γ � ∆:

z = E1,2 = ∆ cos

[
Arccos

(
± cosφ/2√
1 + 4s2/Γ 2

)

+ Arctan
(

2s
Γ

)]
, (12)

case 2: Γ, s� ∆:

z = E1,2 = s± Γ

2
cos(φ/2). (13)

In the general case, for arbitrary Γ, ε, s(=JS) and ∆, we
calculate numerically the roots, by transforming the l.h.s.
of equation (11) into a 8th order polynomial in z to get
rid of the square roots, and then calculating the roots
of this polynomial. We find that only two of these roots
correspond to roots of equation (11) (see also Ref. [9]),
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Fig. 2: The two Andreev bound states as function of phase
difference. For s > 0 in the right panel and for s < 0 in
the left panel. The labelling of the curves is as follows: spin
s=0(black,solid line), 1.0 (red, dotted line), 2.0 (blue, dashed
line) and 4.0 (green, dot-dashed line). The other parameters
are Γ = 4.0, γ = 0.0, β = 1000, ε = 0.0, and ∆ = 1.0.

and that these two roots are real and belong to [−∆,∆].
There are thus always two Andreev bound states, as in
the zero spin case: the effect of the spin term is merely
to move these two states, but it does not introduce new
bound states.

In Figure 2, we plot the two Andreev bound state po-
sitions as a function of the phase difference for four values
of spin, |s| = 0, 1, 2, and 4, for large transparency of the
contacts (Γ = 4.0) and very low temperature (β = 1000).
∆ = 1 is taken as the unit of energy in our system, as in
the rest of this work. The right panel in Figure 2 corre-
sponds to s > 0 while left panel is for s < 0. We see that
when the absolute value of s is increased, the two Andreev
levels are pushed towards +∆ or −∆.

It might seem surprising that the Andreev bound
states are different for +s and −s. Indeed, our physical
system is invariant under the interchange of spin up and
spin down electron combined to the exchange s → −s;
as the superconductors are the same under the spin in-
terchange, our physical system has thus to be invariant
under the transformation s → −s. As will be shown in
the next sections, the total Josephson current, which is
a physically measurable quantity, is invariant under this
transformation (s→ −s). However, the expression of this
total current in terms of the Andreev bound state current
and of the continuum current, depends on ths sign of s
(and so do the Andreev bound states) [10].

The different Andreev bound states obtained for s and
for −s are thus two different ways to represent the same
physical situation. The fact that we obtain one of the
two possibilities for a given external spin can be traced
back to our initial choice of the spinors for the super-
conductors (Eq. (3)) and for the dot (Eq. (4)): had we
chosen the spinors defined with opposite spin (for exam-
ple, d† = (d†↓, d↑), to be compared with the definition of
Eq. (4)), we would have obtained for s < 0 the Andreev

bound states shown here for s > 0, and vice-versa. One
could also use a combination of the two possibilities of
spinors, in order to get a spectrum of Andreev bound
states (and bound state current) which is independent of
the sign of s; in this case, the spectrum is composed of four
Andreev bound states, which are precisely the two we ob-
tained for s > 0 plus the two for s < 0. In this paper,
we have chosen to keep the spinors as defined in equa-
tions (3) and (4). This choice will give us a particularly
simple picture for the mechanism leading to the pi-shift
(see below).

3.5 Josephson current

The partition function after integrating out the {d, d̄} vari-
ables is given by

Z =
∫
Dd̄ Dd e−Seff =

∏

wn

detMwn (14)

where Mwn is given in equation (9). The Josephson cur-
rent then reduces to:

IJ = − 2
β

∂

∂φ
lnZ = − 2

β

∂

∂φ

∑

wn

ln(detMwn)

= − 1
β

∑

wn

Γ 2∆2(1 − γ2) sin(φ)
4[detMwn ](∆2 − (iwn)2)

= − 1
β

∞∑

wn=−∞
f(iwn) (15)

where the last equality defines the function f .
Further, the Free energy is given by:

F = − 1
β

∑

wn

ln(detMwn). (16)

In the above equations, detMwn is the same as the l.h.s
of equation (11), with iwn replacing z.

From the above equation, one can calculate the total
Josephson current by summing over the Matsubara fre-
quencies. However, we can transform the above equation
in order to separate explicitly the contributions of the
Andreev bound states and of the continuum, which are
physically meaningful. In order to calculate these contri-
butions, we take advantage of the fact that the Matsubara
frequencies are the poles of the Fermi function nf (z) [41].
We then consider the integral I =

∫
C
dz/(2πi)f(z)nf (z),

where the function f(z) is defined in equation (15). The
function f(z) as seen earlier has two poles on the real axis
between −∆ and ∆ (these are simply the two Andreev
bound states, for which detM = 0). Further, because of
the square roots terms in the detM, it has branch points
at z = ±∆; we have chosen to place branch cuts on the
real axis, for z ∈ [∆,∞] and z ∈ [−∞,−∆]. We thus chose
the contour C as two large semi-circles plus parts going
around the branch cuts. We illustrate the contour, poles
and branch cuts in Figure 3. Thus integral I can be broken
into the sum of the contributions from the large circle D
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of radius R, the two small circles at ±∆, denoted by d1,2

of radius ε, and the contribution from the branch cuts.
Therefore,

I =
1

2πi

∫

C

f(z)nf(z)dz =
1

2πi

∫

D

dz f(z)nf(z)

+
1

2πi

∫

d1

dz f(z)nf (z) +
1

2πi

∫

d2

dz f(z)nf(z)

+
1

2πi
lim
ε→0

∫ ∞

∆

dz [f(z + iε) − f(z − iε)]nf(z)

+
1

2πi
lim
ε→0

∫ −∆

−∞
dz [f(z + iε) − f(z − iε)]nf (z). (17)

The integrals over D and d1,2 tend to zero as R→ ∞ and
ε→ 0. The last two terms in the above equation define the
contribution from the continuum to the current, which we
denote as Ic. From Cauchy’s residue theorem the integral
I can also be evaluated as follows:

(a) function nf (z) = 1/(eβz + 1) has poles at z = iwn,
with residue −1/β. The contributions from these
poles is thus: − 1

β

∑
wn
f(iwn), which is precisely IJ

(Eq. (15));
(b) f(z) has 2 poles of its own, written E1 and E2. These

gives the Andreev bound states contribution, which we
denote by Ib.

We have thus
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

IJ = Ib + Ic

Ib = −nF (E1)res(f(E1)) − nF (E2)res(f(E2))

Ic = lim
ε→0

1
π

[∫ ∞

∆

dz +
∫ −∆

−∞
dz

]
�(f(z + iε)nf (z + iε))

(18)
where res denotes the residue of the quantity in square
brackets, and � stands for the imaginary part. We see
from the equation giving Ib that the contribution from
each Andreev bound state is simply proportional to the
occupation number nF (Ei) (i = 1, 2) of this level. Equa-
tion (18) is the central result of this work, which we have
used to calculate numerically the Ib and Ic curves shown
in the following.

4 Results

In this section, we show the results obtained numerically
for the Josephson current using equation (18). We will
see that, when the coupling to the spin is strong enough,
the junction behaves as a π junction, and that the other
parameters of the system allow a control of this π junc-
tion. We will also show that the mechanism leading to this
π junction behavior can be understood simply in terms
of the bound states and continuum contributions to the
Josephson current.

4.1 Total Josephson current and free energy:
the π shift

In Figure 4, we plot the Josephson current (IJ ) as a func-
tion of the phase φ, for different values of the spin cou-
pling s = JS. We clearly see a π-junction type behavior
as the magnitude of the spin coupling is increased. One
clear inference from Figure 4 is that the strength of the
spin coupling required to engineer a π junction behavior
increases with the interface transparency Γ . We get an-
other point of view of this π shift in Figure 5, where we
plot the free energy F as a function of the phase φ. We see
that with increase in spin coupling strength the transition
from the 0 to the π phase is clearly marked: the absolute
minimum of F shifts from φ = 0 to φ = π.

This figure also brings out other features, namely the
0′ and π′ phases. As is evident from Figure 5, the labelling
of the respective junctions as 0, 0′, π′ and π configurations,
follows from the respective stability of φ = 0 and φ = π
configurations. For a 0 (π) junction, only φ = 0 (φ = π) is
a minimum of F (φ). For the other two cases, both φ = 0, π
are local minima and depending on whether φ = 0 (φ = π)
is the global minimum, one has a 0′(π′) junction [16]. Of
particular interest is the bistable junction, in which both
φ = 0 and φ = π are global minima; note that this bi-
stability is a necessary precondition for the realization of
a Josephson junction qubit [27].

The total Josephson current and the free energy are
invariant with respect to the change of sign of the spin
(s→ −s). As explained in part B of the previous section,
this is to be expected from the invariance of the system
under the spin up-spin down exchange. Technically, it can
be seen on equations (15, 16), using ω−(n+1) = −ωn. Note
that, as explained before, the Andreev bound states are
not invariant under s→ −s, and thus the Andreev bound
states current and the continuum current are also not in-
variant.

4.2 Mechanism of the π-shift

The ability to distinguish, in the Josephson current, be-
tween the contributions from each Andreev bound state
and from the continuum (see Eq. (18)) provides us with
a simple picture for the mechanism leading to the π shift
for large spin coupling. Note that the picture we obtain
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a b c

Fig. 4: The total Josephson current (IJ ) as function of the phase difference for increasing spin. The π junction behavior is clearly
seen. (a) Γ = 0.2; (b) Γ = 2; (c) Γ = 10. The other parameters are: ∆ = 1.0, β = 1000, γ = 0, and ε = 0.
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Fig. 5: The Free energy (F) as function of the phase dif-
ference (Φ) for increasing spin from top to bottom. The π
junction behavior is clearly seen. The other parameters are:
∆ = 1.0, Γ = 4.0, γ = 0, β = 1000 and ε = 0.

depends on the initial choice of spinors (see the discus-
sion at Sect. 3.4); the choice we make here allows us to
get a very simple picture. In a few words, the effect of
the spin coupling is to reduce or suppress the Andreev
bound states contribution, and to give more importance
to the continuum contribution, and this leads to the π
shift. With more details, the effect of the spin coupling on
the bound states current can be understood from equa-
tion (18) and Figure 2. For s = 0, we see in Figure 2 that
there is always one bound state below the Fermi level, and
the other one above. As the contribution of a bound state
to the Josephson current is proportional to the occupa-
tion number nF (Ei) of this bound state (Eq. (18)), this
means that we have only one bound state contributing
to the current, and this contribution appears to be much
larger than the continuum contribution. With a large pos-
itive spin coupling s, we see in Figure 2 that both Andreev
bound states are above the Fermi level, which means their
contribution to the Josephson current vanishes; while for
a large negative spin coupling s, we see that both bound
states are below the Fermi energy, which means they both
contribute to the Josephson current, and this reduces the

total bound state contribution as the respective contri-
butions of the two bound states have opposite signs. Note
that the total Josephson current is independent of the spin
coupling sign, but that for large s > 0 there is only the
contribution from the continuum, while for large s < 0
there is a combinations of the bound states and the con-
tinuum contributions. This explanation is illustrated in
Figure 6, where the contributions of the bound states and
of the continuum are plotted for different values of s.

The origin of the continuum current — which is non-
zero even at zero temperature — is due to the phase dif-
ference between the two superconductors, which breaks
the symmetry between the left and right-moving quasi-
particles [42,43]. One can draw an analogy with per-
sistent currents flowing in normal metal rings at zero
temperature. In normal metal rings the flux breaks the
symmetry between clockwise and anti-clockwise moving
electrons inducing the persistent current. At zero temper-
ature all states below the Fermi energy are filled, still then
the persistent current is non-zero [44].

We also observe that the continuum current generally
flows opposite to the bound state current. This observa-
tion is in agreement with that of other works [8,9].

We finally add that one can also understand the fact
that the full current is the same for +s and −s but with
different contributions from bound states and continuum
by using electron hole symmetry. At first sight, electron
hole symmetry only holds when the dot level coincides
with the superconducting chemical potential. We first dis-
cuss this case, and then we address below the case where
a gate voltage shifts the dot level away from this location.

Consider the case of negative coupling (s < 0) in Fig-
ure 2a. From the electron point of view, occupied states
below the Fermi level have a continuum contribution to
the current and a bound state contribution. From the
point of view of holes, which occupy all states above
the Fermi level, there is a continuum contribution to the
current of occupied hole states while the contribution of
bound states above the Fermi level diminishes with in-
creasing |s|. For sufficiently large |s|, the two bound states
are below the Fermi level and the holes cease to have
a bound state contribution. On the opposite, for posi-
tive coupling in Figure 2b, the role of electrons and holes
is reversed: from the electron point of view, the bound
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Fig. 6: The Andreev bound state current (Ib), continuum current (Ic) and total Josephson current (IJ ) as function of phase
difference φ. The individual Andreev bound state contributions (Ib1, Ib2) are plotted in the insets. Figure 6c is for spin s = 0.0.
Figures 6d and 6e depict the case of s < 0 (6d for s = −1.5, 6e for s = −2.1). Figures 6a and 6b depict the case of s > 0 (6a
for s = 2.1, 6b for s = 1.5). The other parameters are: ∆ = 1.0, Γ = 4.0, γ = 0.0, β = 1000 and ε = 0.

state contribution is reduced — and eventually vanishes —
when increasing s > 0; from the hole point of view, holes
occupying both the continuum and the Andreev bound
states above the Fermi level. We thus see that for positive
(negative) s, the role of electrons and holes is reversed,
and the electron hole symmetry can explain why physi-
cally observable quantities are invariant under the substi-
tution s→ −s.

Next consider the case where the dot level does not
coincide with the chemical potential (ε 	= 0). In any
normal metal devices, this indeed breaks electron hole
symmetry, nevertheless we wish to point out that be-
cause we are dealing with a superconducting system the
above argumentation still holds. When dealing with an
arbitrary superconductor-normal metal- superconductor
(SNS) junction, Andreev bound states are understood
from the conversion of electrons into holes and vice versa
at the superconducting junction. An alternative picture
is to say that two electrons, one above the chemical po-
tential with energy E, and one below with energy −E
are transfered through the normal region from one super-
conductor to the other. For our quantum dot setup, cal-

culations of the Josephson current could for instance be
performed using T-matrix formalism (to all orders for an
exact result), where information about energies appears
only in the form of differences of energy levels (E − ε for
the positive energy electron and E + ε for the negative
energy electron). These two energy differences are invari-
ant under the change ε → −ε. A dot with say, ε > 0 will
thus have the same Andreev bound states spectrum and
Josephson current, as a dot with ε < 0. This is indeed ex-
plicit in equation (11), which is invariant under the trans-
formation ε→ −ε. In the presence of the impurity spin the
bare dot level is split by a Zeeman like coupling (the ex-
change term), nevertheless the above statement (ε → −ε
symmetry in the energy differences) still applies: the An-
dreev spectrum is reversed between +s and −s, but the
Josephson current is shown to be the same because it can
be computed from the point of view of electrons (say, for
+s) or, alternatively, of holes (for −s).

In conclusion, because the Andreev bound state is the
same for positive and negative ε, the symmetry +s→ −s
also holds for physically observable quantities such as
the current. The argument for ε = 0 describing the
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BA C

Fig. 7: (A) The Andreev bound state current (Ib, dotted line), the continuum contribution (Ic, solid line) and the total Josephson
current (IJ , dashed line) as function of dot level ε, for positive coupling. The π junction behavior is clearly seen as dot level is
varied, in the insets the individual bound state contributions(Ib1, Ib2) are plotted for s < 0 and positive s > 0 (for s < 0 the
continuum and total bound state currents are also plotted). The total Josephson current (IJ) is identical for s < 0 and s > 0.
The other parameters are: ∆ = 1.0, s = 2.1, φ = π/2, Γ = 4.0, β = 1000 and γ = 0. (B) The Free energy as function of the
phase difference (φ) for increasing dot energies, and (C) Andreev levels for both negative as well as positive coupling. The other
parameters for B and C are: ∆ = 1.0, s = 2.1, Γ = 4.0, β = 1000 and γ = 0.

contribution of electrons and holes populations on the con-
tinuum and discrete levels is unaffected by the modifica-
tion ε 	= 0. This fact is demonstrated in Figure 7c, where
the bound state spectrum is plotted as a function of flux
for several values of ε, for positive and negative s.

4.3 Controlling the Π shift

A remarkable feature of our system is that the π shift be-
havior can be controlled and reversed using the different
parameters of the system. This is important for potential
experimental implementations, as some of these parame-
ters can be accessed relatively easily (one can for example
move the dot level by using a gate voltage [45]), while
the spin coupling is a fixed quantity which depends in the
molecule used. Our results show that, when the spin cou-
pling is large enough to have a π junction, a change in
any of the parameter of the system (dot level ε, coupling
to the leads Γ , asymmetry of this coupling γ, and even the
temperature) makes it possible to have the system behave
as a standard 0 junction (going through any intermedi-
ate situation between π and 0 junction). Schematically,
the mechanism for this can be understood along the same
lines as the explanation given above for the π shift: start-
ing from a π junction situation, where both Andreev levels
are (for example) above the Fermi energy and thus do not
contribute to the Josephson current, changing a parame-
ter of the system can move the Andreev level positions,
and as soon as one of the Andreev level goes below the
Fermi energy, it gives an important bound state contribu-
tion which brings the system back to a 0 junction behavior.
This is illustrated in Figure 7, where the dependence of
the currents (panel A), of the free energy (panel B) and
of the Andreev levels (panel C) as a function of the dot
level position ε. Similar plots are obtained when looking
at the Γ or γ dependence (not shown).

The picture is a bit different when the temperature
is changed, as there the Andreev levels do not move, but
the Fermi functions become broader as temperature is in-
creased, leading to a partial revival of the bound state
current. This is shown in Figure 8, where the dependence
of the currents (panel A) and of the free energy (panel B)
is shown as a function of β = 1/(kBT ). Starting from low
temperature (high β), with a π junction behavior (the to-
tal current IJ is < 0, and the free energy has its minimum
at φ = π), we see that when the temperature increases
(β decreases), the total current becomes positive, and the
minimum of the free energy shifts from φ = π to φ = 0.

5 Discussion

We have studied in the previous sections the behavior of
the Josephson current as a function of the spin coupling
strength, and found that a π junction behavior appears
when this coupling is large enough. In view of an experi-
mental realization, one must ask if the actual value of the
spin coupling obtained with a given molecular magnet is
large enough to observe this π junction behavior. While a
precise estimate, for a real molecule, of the magnetic cou-
pling energy between the electronic spin and the molec-
ular spin is beyond the scope of this paper, we can get
a gross estimate by calculating the interaction energy of
two magnetic dipoles at a distance typical of the molecular
distance involved in our problem. Taking a spin S = 10 for
the molecule (as in Mn12ac), and a distance ∼5 Å, we find
a interaction energy ∼0.1 meV, which is of the same order
as the superconducting gap. This estimate shows that the
π junction regime due to spin coupling may be reached
experimentally.

Let us now discuss some potential applications of our
results. The system could beused as a Josephson current
switch. Looking at the panel A of Figure 7, we see that
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Fig. 8: (A) Andreev bound state current (Ib), the continuum contribution (Ic) and the total Josephson current (IJ) as function
of inverse temperature β for positive coupling. The π junction behavior is clearly seen as inverse temperature β is varied. In
the insets the individual bound state currents for the case of s > 0 and s < 0 are plotted. For s < 0, the continuum along
with the total bound state current is also plotted. The total Josephson current IJ is identical for s > 0 and s < 0. The other
parameters are: ∆ = 1.0, s = 2.1, ε = 0.0, γ = 0.0, φ = π/2 and Γ = 4.0. (B) The Free energy as function of the phase difference
at different temperatures. The junction is bistable at the crossover between 0−π junction behaviors. The other parameters are:
∆ = 1.0, s = 2.1, ε = 0.0, γ = 0.0, and Γ = 4.0.

there is an abrupt change of the current sign as ε goes
through a specific value depending on the other param-
eters (it is ε � 1.5 in the figure), while the current does
not change much elsewhere. As ε should be experimen-
tally accessible using a gate voltage, a Josephson current
switch could be implemented. Moreover, this implementa-
tion should be easier than in systems where the Josephson
current changes sign several times as a parameter is var-
ied.

A more ambitious application would be to engineer a
qubit with the system we describe in this work. Indeed,
we have shown that, when varying some parameters, it is
possible that the system behaves as a bistable junction
(see for example panel B of Fig. 7), where the system has
a degenerate ground state. This feature can be effectively
exploited to fashion a qubit system [46], where the junc-
tion itself can be in a superposition [27] of the two ground
states at either a phase difference of 0 or π. In contrast to
the superconducting persistent current qubit [47], it is here
the two phase states of the Josephson junction which pro-
vide the two states of the qubit. These qubits are therefore
called superconducting phase qubits as in reference [27].
Similar to that in reference [48], the coherent Rabi oscil-
lations in our system could in principle be observed by a
measurement of the phase sensitive sub-gap Andreev con-
ductance across a high resistance tunnel contact between
the qubit and a dirty metal wire [50].

6 Conclusion

To conclude, we have studied in this work the proper-
ties of the Josephson current between two superconductors
through a single molecular magnet, which we modeled as

a quantum dot plus a large frozen spin. We have shown
that the coupling between the electronic spin on the dot
and the molecular spin lead the system to behave as a π
junction. We have given a simple mechanism explaining
this π junction behavior, in terms of bound state current
and continuum current.

We have shown moreover that the other parameters of
the system give a precise control of this π junction, al-
lowing for example to reverse the π shift and to bring the
system to the normal 0 junction state, or to an interme-
diate bistable state. This control of the π shift can lead
to useful applications, like a Josephson current switch, or
could even be used to engineer a phase qubit.

Possible topics of future study in such systems may
include incorporating the dynamical nature of molecular
spin [49] and quantum tunneling of the magnetization [1],
when the anisotropy barrier is not much larger than all the
other energies of the problem. Also interesting would be to
include electron-electron/electron-phonon interactions in
the present work, in order to study the combination of the
effects of the molecular spin and of the Coulomb charging
energy, or/and the effect of electron-phonon interactions.

The authors would like to acknowledge Dr. Eric Soccorsi for
valuable mathematical comments.
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